[1ÀÏÂ÷]
- ÆÄÀ̽㠼Ұ³
- ºñÁÖ¾ó ½ºÆ©µð¿À ÄÚµå ¼³Ä¡¿Í »ç¿ë
- ÆÄÀ̽ãÀÇ ±âº» Çü½Ä Á¤¸®
- ÇÊ¿äÇÑ µ¥ÀÌÅ͸¦ À¥Å©·Ñ¸µÇؼ »ç¿ëÇϱâ
[2ÀÏÂ÷]
- µ¥ÀÌÅÍ ºÐ¼®À» À§ÇÑ Çʼö ÆÐŰÁö¿Í ÇÔ¼ö
- reshape2 ÆÐŰÁö
- KoNLP¸¦ Ȱ¿ëÇÏ¿© ÇÑ±Û µ¥ÀÌÅÍ ºÐ¼®
- dplyr ÆÐŰÁö·Î µ¥ÀÌ³Ê Àüó¸®
[3ÀÏÂ÷]
- Scikit-Learn ÆÐŰÁö Ȱ¿ë¹æ¹ý ÀÌÇØ
- ¼±Çüȸ±Í ÀÌÇØ
- ·ÎÁö½ºÆ½ ȸ±Í
- Decision Tree ÀÌÇØ
- Random Forest
- Ä¿³Î ¼Æ÷Æ® º¤Å͸ӽŠÀÌÇØ
- KNN
- Naive Bayes
[4ÀÏÂ÷]
- Convolutional Neural Networks(CNN)
- CNN ¾ÆÅ°ÅØÃ³
- convolution ¿¬»ê ¹× °³³ä ÀÌÇØ, Stride, Padding
- Pooling layer
- ÅÙ¼Ç÷ο츦 »ç¿ëÇÑ CNN Image Classifier ±¸Çö
- CNN È®Àå : VGG, Inception, ResNet etc.
[5ÀÏÂ÷]
- Transfer LearningÀÇ È°¿ë
- Recurrent Neural Networks(RNN)
- RNN ±âº» °³³ä°ú ¿ø¸®
- Long-Short Term Memory Networks(LSTM)
- Char-RNNÀ» Ȱ¿ëÇÑ text generator ±¸Çö