¹Ù·Î°¡±â ¸Þ´º
º»¹® ¹Ù·Î°¡±â
ÁÖ¸Þ´º ¹Ù·Î°¡±â

Programming Academy

±³À°°³¿ä
±³À° Ä¿¸®Å§·³°ú °­»ç´Â »çÁ¤¿¡ ÀÇÇØ º¯°æµÉ ¼ö ÀÖ½À´Ï´Ù.
±³À°¸í,¸¦ Æ÷ÇÔÇÑ ±³À°°úÁ¤ Ç¥
±³À°¸í Áß±Þ ÆÄÀ̽ãÀ» Ȱ¿ëÇÑ ¸Ó½Å·¯´× ¹× AI µö·¯´× ±â¼úÀÇ ÀÌÇØ¿Í ±¸Çö
±³À°±â°£ 2022-03-21 ~ 2022-03-25
±³À°½Ã°£ 09:30 ~ 17:30 (ÇÏ·ç 8½Ã°£, ÃÑ 40½Ã°£)
±³À°Àå ¿¡Æ¼¹ö½º·¯´×(°­³²)  Áöµµº¸±â
°­»ç µö·¯´× Àü¹®°­»ç
Á¤¿ø 15¸í
±³À°ºñ 1,500,000¿ø (VATº°µµ)


±³À°¼Ò°³
¡Ø Ä¿¸®Å§·³ ¹®ÀÇ: ÀÌÇöÁ¾ ÆÀÀå 02-6004-7587 / dl10432@youngwoo.co.kr
¡Ø ±³À°½Åû ¹®ÀÇ: ±èÁ¾ÈÆ ´ë¸® 02-6004-7508 /fevernova22@youngwoo.co.kr

Àü¼¼°è °³¹ßÀÚ°¡ °¡Àå ¸¹ÀÌ ¼±ÅÃÇÑ µö·¯´× ÇÁ·¹ÀÓ¿öÅ©ÀÎ ÅÙ¼­Ç÷οì(TensorFlow) ¸¦ Ȱ¿ëÇÏ¿© µö·¯´×ÀÇ ±âÃʸ¦ ÇнÀÇÏ°í ½Ç½ÀÀ» ÅëÇØ ±¸ÇöÇÑ´Ù.
±³À°¸ñÇ¥
[±³À°¸ñÇ¥]
- µö·¯´×ÀÇ ±âº» ¿ø¸®¿Í ÀÌ·ÐÀû ¹è°æÀ» ÀÌÇØÇÑ´Ù.
- TensorFlow Framework ±¸¼ºÀ» ÀÌÇØÇϰí À̸¦ Ȱ¿ëÇÏ¿© DNN, CNN, RNN°ú °°Àº µö·¯´× ±âº» ¸ðµ¨À» ±¸ÇöÇØº»´Ù.
- ÃÖÀûÈ­/Á¤±ÔÈ­/ÇÏÀÌÆÛÆÄ¶ó¹ÌÅÍ Æ©´×À» ÀÌÇØÇÏ°í ¼º´É Çâ»óÀ» À§ÇÑ ¹æ¹ýµéÀ» ½Ç½ÀÇØº»´Ù.


[¼±¼öÁö½Ä]
- ÆÄÀ̽㠱âÃÊ ¹®¹ý
- ÆÇ´Ù½º, ³ÑÆÄÀÌ, µ¥ÀÌÅÍ ½Ã°¢È­
±³À°´ë»ó
- ÆÄÀ̽ãÀÌ ¹«¾ùÀÎÁö ¾Ë°í ±âÃÊÀû Ȱ¿ëÀÌ °¡´ÉÇÑ °³¹ßÀÚ
- µö·¯´× ¸ðµ¨À» Á÷Á¢ ±¸ÇöÇØº¸¸ç ÀÌÇØÇÏ°í ½ÍÀº °³¹ßÀÚ
±³À°³»¿ë

 


[1ÀÏÂ÷] 

- ÆÄÀ̽㠼Ұ³

- ºñÁÖ¾ó ½ºÆ©µð¿À ÄÚµå ¼³Ä¡¿Í »ç¿ë

- ÆÄÀ̽ãÀÇ ±âº» Çü½Ä Á¤¸®

- ÇÊ¿äÇÑ µ¥ÀÌÅ͸¦ À¥Å©·Ñ¸µÇؼ­ »ç¿ëÇϱâ


[2ÀÏÂ÷]

- µ¥ÀÌÅÍ ºÐ¼®À» À§ÇÑ Çʼö ÆÐŰÁö¿Í ÇÔ¼ö

- reshape2 ÆÐŰÁö

- KoNLP¸¦ Ȱ¿ëÇÏ¿© ÇÑ±Û µ¥ÀÌÅÍ ºÐ¼®

- dplyr ÆÐŰÁö·Î µ¥ÀÌ³Ê Àüó¸®


[3ÀÏÂ÷]

- Scikit-Learn ÆÐŰÁö Ȱ¿ë¹æ¹ý ÀÌÇØ

- ¼±Çüȸ±Í ÀÌÇØ

- ·ÎÁö½ºÆ½ ȸ±Í

- Decision Tree ÀÌÇØ

- Random Forest

- Ä¿³Î ¼­Æ÷Æ® º¤Å͸ӽŠÀÌÇØ

- KNN

- Naive Bayes


[4ÀÏÂ÷]

- Convolutional Neural Networks(CNN)

- CNN ¾ÆÅ°ÅØÃ³

- convolution ¿¬»ê ¹× °³³ä ÀÌÇØ, Stride, Padding

- Pooling layer

- ÅÙ¼­Ç÷ο츦 »ç¿ëÇÑ CNN Image Classifier ±¸Çö

- CNN È®Àå : VGG, Inception, ResNet etc.


[5ÀÏÂ÷]

- Transfer LearningÀÇ È°¿ë

- Recurrent Neural Networks(RNN)

- RNN ±âº» °³³ä°ú ¿ø¸®

- Long-Short Term Memory Networks(LSTM)

- Char-RNNÀ» Ȱ¿ëÇÑ text generator ±¸Çö


 

ÇпøÀÇ ¼³¸³¤ý¿î¿µ ¹× °ú¿Ü±³½À¿¡ °üÇÑ ¹ý·ü ½ÃÇà·É¿¡ µû¶ó ´ÙÀ½°ú °°ÀÌ ¼ö°­·á¸¦ ȯºÒÇØµå¸³´Ï´Ù.

  1. ¹Ýȯ±âÇÑ : ¹Ýȯ»çÀ¯°¡ ¹ß»ýÇÑ °æ¿ì ¹Ýȯ±âÁØ¿¡ µû¶ó ¹Ýȯ»çÀ¯ ¹ß»ýÀϷκÎÅÍ 5ÀÏ À̳»¿¡ ±³½ÀºñµîÀ» ȯºÒÇØ µå¸®°Ú½À´Ï´Ù.
  2. ¹Ýȯ±âÁØ
    • 1) ±³½ÀÀ» ÇÒ ¼ö ¾ø°Å³ª ±³½ÀÀå¼Ò¸¦ Á¦°øÇÒ ¼ö ¾ø°Ô µÈ ³¯À» ±âÁØÀ¸·Î ÀÌ¹Ì ³³ºÎÇÑ ±³½ÀºñµîÀ» ÀÏÇÒ °è»êÇÑ ±Ý¾×À» ȯºÒÇØ µå¸®°Ú½À´Ï´Ù.
    • 2) ±³½À±â°£ÀÌ 1°³¿ù À̳»ÀÎ °æ¿ì, ´ÙÀ½°ú °°ÀÌ È¯ºÒÇØ µå¸®°Ú½À´Ï´Ù.
      - ±³½À½ÃÀÛ Àü : ÀÌ¹Ì ³³ºÎÇÑ ±³½ÀºñµîÀÇ Àü¾×
      - ÃÑ ±³½À½Ã°£ 1/3 °æ°ú Àü : ÀÌ¹Ì ³³ºÎÇÑ ±³½ÀºñµîÀÇ 2/3¿¡ ÇØ´çÇÏ´Â ±Ý¾×
      - ÃÑ ±³½À½Ã°£ 1/2 °æ°ú Àü : ÀÌ¹Ì ³³ºÎÇÑ ±³½ÀºñµîÀÇ 1/2¿¡ ÇØ´çÇÏ´Â ±Ý¾×
      - ÃÑ ±³½À½Ã°£ 1/2 °æ°ú ÈÄ : ¹ÝȯÇÏÁö ¾ÊÀ½
    • 3) ±³½À±â°£ÀÌ 1°³¿ùÀ» ÃʰúÇÏ´Â °æ¿ì, ´ÙÀ½°ú °°ÀÌ È¯ºÒÇØ µå¸®°Ú½À´Ï´Ù.
      - ±³½À½ÃÀÛ Àü : ÀÌ¹Ì ³³ºÎÇÑ ±³½ÀºñµîÀÇ Àü¾×
      - ±³½À½ÃÀÛ ÈÄ : ¹Ýȯ»çÀ¯°¡ ¹ß»ýÇÑ ÇØ´ç¿ùÀÇ ¹Ýȯ ´ë»ó ±³½Àºñµî(±³½À±â°£ 1°³¿ù À̳» ±âÁØ »êÃâ±Ý¾×)°ú ³ª¸ÓÁö ¿ùÀÇ ±³½Àºñµî Àü¾×À» ÇÕ»êÇÑ ±Ý¾×